

Figure 1 ANN with simple competitive learning

Hardware implementation of simple competitive neural networks

with layer parallelism

Ştefan Oniga, Alin Tisan, Daniel Mic, Attila Buchman, Ciprian Gavrincea and Andrei Vida
Electrotehnical Department, North University, Baia Mare, Romania

onigas@ubm.ro

Abstract

Competitive self-organizing and self learning neural networks, also known as self-organizing

feature maps (SOFM), represent one of the most interesting types of the artificial neural networks

(ANN). This paper presents the successful implementation of some simple competitive neural

networks with layer parallelism used in model classification tasks in field programmable gate

arrays (FPGA). The network design was carried out using the System Generator software, which

is also used to generate the VHDL code for the network. Xilinx ISE 8.2i was used for synthesis and

implementation.

1. INTRODUCTION

Competitive self-organizing and self learning neural
networks, also known as self-organizing feature maps
(SOFM), represent one of the most interesting types of
ANN. The way information is organized in the human
brain inspired these types of ANN.

The task of the competitive networks is to classify
input models. Similar models are classified into the
same class, represented by the same output unit. Each
neuron will become specialised in recognising certain
features of the input data.

2. THE STRUCTURE

Self organising neural networks are characterised by
the fact that they actually learn unsupervised to discover

features, regular patterns and correlations of the input
data. The neurons of the simple competitive networks
are arranged in a one-dimensional output layer, totally
connected to the neurons of the input layer through some
stimulating weights. They are permanently in a
competitive state, at a certain point in time only one
being active.

Each neuron has as many input connections as the
number of attributes used in classifying. Starting with a
set of initials weights, randomly generated, the training
procedure consists in finding the neuron that has the
closest weights compared to the input vector and
declaring that neuron as winner. There are two methods
of determining similarity. The first determines the net
input of each neuron according to the equation:

∑=
N

i
ikik xwnet (1)

The neuron for which the net input has the highest
value is declared the winner.

The second method calculates the distance between
the input vector and the weights vector, the most
commonly used being the Euclidian distance, as in the
following equation:

[]
2

∑ −=
N

i
kiik wxnet (2)

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 193

The neuron for which the equation 2 has the smallest
value will win the competition.

The learning process consists of changing the
weights according to the equation:

)(jijji wxw −=Δ η (3)

For the j neuron which won the competition, and

,0=Δ kiw (4)

for the neuron k ≠ j. η represents the learning rate.

Through this, the weights vector of the winning
neuron, j, gets closer to the pattern present at the input.

Upon the completion of the training, the
classification process consists of calculating the distance
between the input vector and each neuron and declaring
the input as pertaining to the class represented by the
winning neuron.

a) The ANN Architecture b) The structure of the IW{1,1} block

Figure 2 Competitive ANN created using NN Toolbox

3. IMPLEMENTING A SIMPLE COMPETITIVE ANN

The training phase of the ANN was software
implemented, while the propagation phase was
implemented hardware. We will present below the way
the network was trained and subsequently implemented
hardware in the propagation phase.

3.1. Training a simple competitive ANN

In order to train a competitive ANN, a simple ANN
was created by using Matlab code or by using the
graphical interface Network/Data Manager. In the
following figure, a competitive network will be
presented, composed of 7 neurons in the input layer and
15 neurons in the output layer.

The IW{1,1} block presented in figure 2.b calculates
the negative of the Euclidian distance between the
applied input vector and the vectors formed by the lines
of the weights matrix. If all the biases are zero, the
maximum net input of the neuron can be zero, when the
input vector is identical to the weights vector of the
neuron. The competitive transfer function receives the
net input of the neuron and supplies a value of zero for
all the neurons, except the winner, that is the one that
has the most positive net input, for which is supplies a
value of 1.

After training the network with a set of 10x15 test
vectors and simulating it, we get the results presented
next:

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 194

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Vector

N
eu

ro
n

Figure 3 The results of the competitive ANN simulation

It is noticeable that, at a certain point in time, only
one neuron is active and that the 15 sets of 10 vectors
are each divided into 15 different classes. The first set of
10 vectors is part of class 12, the second set of class 8,
and so on.

The results of the simulation being as expected (the
classification in 15 different classes of the vector sets)
the weights of the network are saved at this point.

3.2 The hardware implementation of the competitive
ANN

In order to implement a competitive ANN, a model
similar to the one presented in figure 2 was created,
using Xilinx blocks. Calculating the Euclidian distance
using equation 2 is difficult because of the square root
operation that is hard to implement hardware. Due to the

fact that the comparison between the neurons can also be
achieved by using the square of the distances between
the input vectors and the weights of the neurons,
implementing the square root calculation is not
necessary, so the equation 2 can be replaced by:

[]
2

∑ −=
N

i
kiik wxy (5)

To achieve this, the structure of the neuron will
contain a memory for the weights, a block used to
calculate the xi-wki subtractions, a MAC block used to
calculate the sum of the squares of these subtractions
and, finally, the block of the competitive activation
function, as presented in figure 4. The activation
function block is common for all the neurons in the
output layer.

1
Neuron

castigator

Data in

Ad. data A

Ad. data B

Data

Strat intrare

addr

ROM pond.

Data

Ponderi

Reset

Negdist

Negdist

fptdbl

Negdist

Reset

Neuron castigator

Functia de activare
competitiva

dblfpt

Date_in

Ad. data A

Ad. data B

Nr. adr. pond.

Reset

Bloc control

1
Data in

Figure 4 The hardware model of the competitive ANN

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 195

The Negdist block consists of an AddSub Block, part
of the Xilinx Blockset and a MAC block created by the
author. The Addsub block is used to calculate de xi-wki
subtractions, while the MAC block determines the sum
of the squares of these subtractions.

The activation function block, presented next, is
composed of two parts. A first part determines the
minimum of the yk type of inputs of the neurons that
form the output layer, and the second part determines
the position of the neuron which has the minimal output.

1
Neuron

castigatorxlrelational
a

b
a=b

Relational1

xlrelational
a

b
a<=b

Relational xlregisterz-1
d

en
q

Register3

xlregisterz-1
d

rst
q

Register2

xlmux
sel
d0
d1d1
Mux

xllogical or

Logical1

xllogical and

Logical

xl inv not

Inverter

z-1

Delay

outen

Counter1 out
rst

en

Counter

k =0

Constant

2 Reset
1

Negdist

Figure 5 The competitive function activation block

4. IMPLEMENTING A COMPETITIVE ANN WITH LAYER

PARALLELISM

In order to implement a competitive ANN with layer
parallelism, a single processing element per layer is
required. To verify the performance of a competitive
ANN with layer parallelism, a network with an n1=7
neurons input layer and an n2=15 neurons output layer
was implemented. The hardware model has the same
structure as the model of the neuron presented in figure
4. The competitive ANN with layer parallelism consists
of a control block, an input layer made with a memory

of type Block RAM, a weights memory common to all
the neurons, the simplified Euclidian distance calculus
block and the competitive function activation block, also
shared by all the neurons. The architecture is the same,
no matter how many neurons are there on the input,
respectively on the output layer. The only differences
are the parameters of the blocks, the capacity of the
memories and the computational speed.

The results of the network simulation are presented
next.

a) b)
Figure 6 Software and hardware simulation of the competitive ANN model

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 196

The first graphic, in figure 6.a represents the
classification in the 15 classes of the 15x10 input
vectors, classification resulting from the software
implementation of the network. The second graphic
presents the classification made by the hardware model,
while the last presents its errors compared to the
software model. In figure 6.b, a detailed view of the
hardware model simulation is presented

Following the application of a vector at the input of
the input layer, this is applied to the output layer at a
frequency of (n1+1)n2 times higher due to the fact that

the negdist block must execute n1+1 computations for
each of the n2 neurons.

As we can see, there is no difference between the
classification made by the hardware model compared to
the one made by the software implementation.
Simulating the hardware model using another set of
15x10 test vectors creates the same results, without any
errors.

The resources used by the ANN implemented into a
Virtex II XC2V1000 device are presented next:

 Comand

 block
Input layer Weights

Memory
Dist. calc.

block
Activation
function

TOTAL

Slices 16 3 0 15 34 68
Flip-flops 15 4 3 25 27 74
RAM blocks 0 1 1 0 0 2
Mem. tables 24 0 0 12 40 76
Multipliers 0 0 0 1 0 1

Table 1 Resources used by the competitive ANN

The results of the post-implementation simulation,
presented in the next figure, confirm the correct
functioning of the implemented circuit. The elements of
the input vector are fed to the input layer in a sequential
manner with a frequency of 1/Ts,

where Ts represents the duration of a vector element
equal to:

Ts = (n1+1)n2Tclk =1200 ns (6)

for a clock signal frequency of 100 MHz. The
duration of the input vector is 8400 ns. The first test
vector from the figure ([1 5 6 6 5 3 7]) is assigned to the
first class, the winning neuron, after applying the second
vector ([1 1 5 6 5 2 7]) is neuron 6, and so on.

The input layer successively transmits these
elements to the output layer with a frequency of
(n1+1)n2/Ts, allowing it to perform the (n1+1)n2
calculations. The neuron that wins the competition is
determined after 128 ns.

a) Detail of the first 4 vectors

b) Detail on the computation times for the second test vector

Figure 7 The post implementation simulation of the ANN with layer parallelism

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 197

The maximum frequency of the clock signal resulted
from the synthesis report is 136 MHz. The maximum
frequency with which the input vector elements can be
applied is:

Fs max = Fclk max/(n1+1)n2 =1,133 MHz (7)

5. CONCLUSIONS

This paper presents the successful implementation of
some simple competitive neural networks used in model
classification tasks.

The competitive network implemented is the one
using layer parallelism, having a single processing
element. The ANN implemented classifies correctly all
the training vectors and two different sets of 15x10 test
vectors. The resources used are minimal, (around 1.3%
of a Virtex II XC2V1000 device for a network of 15
neurons) fact that permits the development of large size
networks. The maximum frequency of the clock signal is
1.133 MHz.

This type of network presents an advantage for the
cases in which the frequency of the patterns that must be
identified is under 1MHz, because it allows the
development of large networks without modifying the
structure of the circuit. If the input vectors have a
frequency between 1MHz and 15MHz, a network with
neuronal parallelism must be used.

Among the author’s contributions we can mention:

- Hardware design of the Negdist block which
allows calculating the sum of the squares of the
subtraction operation between the elements of
two vectors (equation 5).

- The development of an algorithm used to
determine the neuron for which the distance
between the weight vector and the input vector is
minimal.

- Conception of the hardware model for the
competitive function activation block.

- The modelling of a competitive ANN with layer
parallelism using the IP blocks.

- The estimation of the resources used from within
the FPGA device and the selection of the FPGA
which has the most suitable characteristics.

- Finding of the maximum input signal frequency
function of the maximum frequency of the
network and the parameters of the network (the
number of inputs and respectively the number of
neurons).

REFERENCES

[1] J. Starzyk, Y. Guo. “A Self-Organizing Learning Array and its
Hardware-Software Co-Simulation”, Proc. ECCTD, Krakow,
Poland, 2003

[2] T. Kohonen. Self-Organizing Maps. Third Edition. Springer-
Verlag Berlin, 2001

[3] S. Oniga, “A New Method for FPGA Implementation of
Artificial Neural Network Used in Smart Devices”, International
Computer Science Conference microCAD 2005, Miskolc,
Hungary, March 2005, pp. 31-36

[4] A. Tisan, S. Oniga, A. Buchman, C. Gavrincea, Architecture and
Algorithms for Syntetizable Neural Networks with On-Chip
Learning, International Symposium on Signals, Circuits and
Systems, ISSCS 2007, July 12-13, 2007, Iasi, Romania, vol.1, p.
265 - 268, ISBN 1-4244-0968-3, IEEE Catalog Number:
07EX1678, Library of Congress: 2007920356

[5] S. Oniga, A. Tisan, D. Mic, A. Buchman, A. Vida-Ratiu, Hand
Postures Recognition System Using Artificial Neural Networks
Implemented in FPGA, 30th International Spring Seminar on
Electronics Technology, ISSE 2007. Technical University of
Cluj-Napoca, ROMANIA, May 9-13, 2007, p. 507 - 512, ISBN
1-4244-1218-8, IEEE Catalog Number: 07EX1780C, Library of
Congress: 2007924573

International Symposium for Design and Technology of Electronic Packages 13th Edition, Baia Mare, Romania

ISBN 978-973-713-188-1 198

