
 

Figure 1 ANN with simple competitive learning 

Hardware implementation of simple competitive neural networks 

with layer parallelism

Ştefan Oniga, Alin Tisan, Daniel Mic, Attila Buchman, Ciprian Gavrincea and Andrei Vida 
Electrotehnical Department, North University, Baia Mare, Romania 

onigas@ubm.ro  

Abstract 

Competitive self-organizing and self learning neural networks, also known as self-organizing 

feature maps (SOFM), represent one of the most interesting types of the artificial neural networks 

(ANN). This paper presents the successful implementation of some simple competitive neural 

networks with layer parallelism used in model classification tasks in field programmable gate 

arrays (FPGA). The network design was carried out using the System Generator software, which 

is also used to generate the VHDL code for the network. Xilinx ISE 8.2i was used for synthesis and 

implementation.   

1. INTRODUCTION 

Competitive self-organizing and self learning neural 
networks, also known as self-organizing feature maps 
(SOFM), represent one of the most interesting types of 
ANN. The way information is organized in the human 
brain inspired these types of ANN.  

The task of the competitive networks is to classify 
input models. Similar models are classified into the 
same class, represented by the same output unit. Each 
neuron will become specialised in recognising certain 
features of the input data. 

2. THE STRUCTURE 

Self organising neural networks are characterised by 
the fact that they actually learn unsupervised to discover 

features, regular patterns and correlations of the input 
data. The neurons of the simple competitive networks 
are arranged in a one-dimensional output layer, totally 
connected to the neurons of the input layer through some 
stimulating weights. They are permanently in a 
competitive state, at a certain point in time only one 
being active. 

Each neuron has as many input connections as the 
number of attributes used in classifying. Starting with a 
set of initials weights, randomly generated, the training 
procedure consists in finding the neuron that has the 
closest weights compared to the input vector and 
declaring that neuron as winner. There are two methods 
of determining similarity. The first determines the net 
input of each neuron according to the equation: 

∑=
N

i
ikik xwnet    (1) 

The neuron for which the net input has the highest 
value is declared the winner. 

The second method calculates the distance between 
the input vector and the weights vector, the most 
commonly used being the Euclidian distance, as in the 
following equation: 
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The neuron for which the equation 2 has the smallest 
value will win the competition. 

The learning process consists of changing the 
weights according to the equation: 

)( jijji wxw −=Δ η    (3) 

 

For the j neuron which won the competition, and 

,0=Δ kiw     (4) 

for the neuron k ≠ j. η represents the learning rate. 

Through this, the weights vector of the winning 
neuron, j, gets closer to the pattern present at the input. 

Upon the completion of the training, the 
classification process consists of calculating the distance 
between the input vector and each neuron and declaring 
the input as pertaining to the class represented by the 
winning neuron. 

 

 

 

a) The ANN Architecture b) The structure of the IW{1,1} block 

Figure 2 Competitive ANN created using NN Toolbox 

3. IMPLEMENTING A SIMPLE COMPETITIVE ANN 

The training phase of the ANN was software 
implemented, while the propagation phase was 
implemented hardware. We will present below the way 
the network was trained and subsequently implemented 
hardware in the propagation phase. 

3.1. Training a simple competitive ANN 

In order to train a competitive ANN, a simple ANN 
was created by using Matlab code or by using the 
graphical interface Network/Data Manager. In the 
following figure, a competitive network will be 
presented, composed of 7 neurons in the input layer and 
15 neurons in the output layer. 

 

The IW{1,1} block presented in figure 2.b calculates 
the negative of the Euclidian distance between the 
applied input vector and the vectors formed by the lines 
of the weights matrix. If all the biases are zero, the 
maximum net input of the neuron can be zero, when the 
input vector is identical to the weights vector of the 
neuron. The competitive transfer function receives the 
net input of the neuron and supplies a value of zero for 
all the neurons, except the winner, that is the one that 
has the most positive net input, for which is supplies a 
value of 1. 

After training the network with a set of 10x15 test 
vectors and simulating it, we get the results presented 
next:  
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Figure 3 The results of the competitive ANN simulation 

 

It is noticeable that, at a certain point in time, only 
one neuron is active and that the 15 sets of 10 vectors 
are each divided into 15 different classes. The first set of 
10 vectors is part of class 12, the second set of class 8, 
and so on. 

The results of the simulation being as expected (the 
classification in 15 different classes of the vector sets) 
the weights of the network are saved at this point. 

3.2 The hardware implementation of the competitive 
ANN 

In order to implement a competitive ANN, a model 
similar to the one presented in figure 2 was created, 
using Xilinx blocks. Calculating the Euclidian distance 
using equation 2 is difficult because of the square root 
operation that is hard to implement hardware. Due to the 

fact that the comparison between the neurons can also be 
achieved by using the square of the distances between 
the input vectors and the weights of the neurons, 
implementing the square root calculation is not 
necessary, so the equation 2 can be replaced by: 
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2
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To achieve this, the structure of the neuron will 
contain a memory for the weights, a block used to 
calculate the xi-wki subtractions, a MAC block used to 
calculate the sum of the squares of these subtractions 
and, finally, the block of the competitive activation 
function, as presented in figure 4. The activation 
function block is common for all the neurons in the 
output layer. 
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Figure 4 The hardware model of the competitive ANN 
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The Negdist block consists of an AddSub Block, part 
of the Xilinx Blockset and a MAC block created by the 
author. The Addsub block is used to calculate de xi-wki 
subtractions, while the MAC block determines the sum 
of the squares of these subtractions. 

The activation function block, presented next, is 
composed of two parts. A first part determines the 
minimum of the yk type of inputs of the neurons that 
form the output layer, and the second part determines 
the position of the neuron which has the minimal output.  
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Figure 5 The competitive function activation block 

 

4. IMPLEMENTING A COMPETITIVE ANN WITH LAYER 

PARALLELISM 

In order to implement a competitive ANN with layer 
parallelism, a single processing element per layer is 
required. To verify the performance of a competitive 
ANN with layer parallelism, a network with an n1=7 
neurons input layer and an n2=15 neurons output layer 
was implemented. The hardware model has the same 
structure as the model of the neuron presented in figure 
4. The competitive ANN with layer parallelism consists 
of a control block, an input layer made with a memory 

of type Block RAM, a weights memory common to all 
the neurons, the simplified Euclidian distance calculus 
block and the competitive function activation block, also 
shared by all the neurons. The architecture is the same, 
no matter how many neurons are there on the input, 
respectively on the output layer. The only differences 
are the parameters of the blocks, the capacity of the 
memories and the computational speed. 

The results of the network simulation are presented 
next. 

 

 

 

a) b) 
Figure 6 Software and hardware simulation of the competitive ANN model 
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The first graphic, in figure 6.a represents the 
classification in the 15 classes of the 15x10 input 
vectors, classification resulting from the software 
implementation of the network. The second graphic 
presents the classification made by the hardware model, 
while the last presents its errors compared to the 
software model. In figure 6.b, a detailed view of the 
hardware model simulation is presented 

Following the application of a vector at the input of 
the input layer, this is applied to the output layer at a 
frequency of (n1+1)n2 times higher due to the fact that 

the negdist block must execute n1+1 computations for 
each of the n2 neurons.  

As we can see, there is no difference between the 
classification made by the hardware model compared to 
the one made by the software implementation. 
Simulating the hardware model using another set of 
15x10 test vectors creates the same results, without any 
errors.  

The resources used by the ANN implemented into a 
Virtex II XC2V1000 device are presented next: 

 
 Comand 

 block  
Input layer Weights 

Memory 
Dist. calc.  

block 
Activation 
function 

TOTAL 

Slices 16 3 0 15 34 68 
Flip-flops 15 4 3 25 27 74 
RAM blocks 0 1 1 0 0 2 
Mem. tables 24 0 0 12 40 76 
Multipliers 0 0 0 1 0 1 

Table 1 Resources used by the competitive ANN 
 

The results of the post-implementation simulation, 
presented in the next figure, confirm the correct 
functioning of the implemented circuit. The elements of 
the input vector are fed to the input layer in a sequential 
manner with a frequency of 1/Ts,  

where Ts represents the duration of a vector element 
equal to: 

Ts = (n1+1)n2Tclk =1200 ns   (6) 

for a clock signal frequency of 100 MHz. The 
duration of the input vector is 8400 ns. The first test 
vector from the figure ([1 5 6 6 5 3 7]) is assigned to the 
first class, the winning neuron, after applying the second 
vector ([1 1 5 6 5 2 7]) is neuron 6, and so on. 

The input layer successively transmits these 
elements to the output layer with a frequency of 
(n1+1)n2/Ts, allowing it to perform the (n1+1)n2 
calculations. The neuron that wins the competition is 
determined after 128 ns. 

 
a) Detail of the first 4 vectors 

 
b) Detail on the computation times for the second test vector 

Figure 7 The post implementation simulation of the ANN with layer parallelism 
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The maximum frequency of the clock signal resulted 
from the synthesis report is 136 MHz. The maximum 
frequency with which the input vector elements can be 
applied is: 

Fs max = Fclk max/(n1+1)n2 =1,133 MHz (7) 

5. CONCLUSIONS 

This paper presents the successful implementation of 
some simple competitive neural networks used in model 
classification tasks.  

The competitive network implemented is the one 
using layer parallelism, having a single processing 
element. The ANN implemented classifies correctly all 
the training vectors and two different sets of 15x10 test 
vectors. The resources used are minimal, (around 1.3% 
of a Virtex II XC2V1000 device for a network of 15 
neurons) fact that permits the development of large size 
networks. The maximum frequency of the clock signal is 
1.133 MHz. 

This type of network presents an advantage for the 
cases in which the frequency of the patterns that must be 
identified is under 1MHz, because it allows the 
development of large networks without modifying the 
structure of the circuit. If the input vectors have a 
frequency between 1MHz and 15MHz, a network with 
neuronal parallelism must be used.  

Among the author’s contributions we can mention: 

- Hardware design of the Negdist block which 
allows calculating the sum of the squares of the 
subtraction operation between the elements of 
two vectors (equation 5). 

- The development of an algorithm used to 
determine the neuron for which the distance 
between the weight vector and the input vector is 
minimal.  

- Conception of the hardware model for the 
competitive function activation block. 

- The modelling of a competitive ANN with layer 
parallelism using the IP blocks. 

- The estimation of the resources used from within 
the FPGA device and the selection of the FPGA 
which has the most suitable characteristics. 

- Finding of the maximum input signal frequency 
function of the maximum frequency of the 
network and the parameters of the network (the 
number of inputs and respectively the number of 
neurons). 
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